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Among the basic concepts in the theory of sampling inspection the producer’s

and the consumer’s risks are the most widely used for characterizing sysiem:

of sampling plans. It seems therefore strange that a comprehensive theory based
on these concepts does not exist. The purpose of the present paper is (o present
such a theory for the case of single sampling by attributes. The theory naturally
covers some well-known results, but old as well as new results are derived

by a common method and compared within the same model. The requirements defining
a system of sampling plans are usually of such a nature that no explicit solution
exists for the sample size and the acceptance number. We shall therefore supple-
ment the exact (implicit) solutions by asymptotic solutions which give a better
insight into the basic properties of the systems.

Let there be given two quality levels, Py and Py Py < Py For a sampling plan,
(n,c), o denoting the sample size and c the acceptance number, the operating
characteristic is defined as P(p) = B(c,n,p), where B(c,n,p) denotes the
cumulative binomial distribution, The producer’s risk is then Q(pl) - l-P(pl),
and the consumer’s risk is P(pz). These risks give the probabilities of wrong
decisions under the assumption that P, represents acceptable and Py rejectable
quality.

We shall furthermore assume that the consequences of wrong decisions are
commensurable and measurable and that the average ''loss" from using a given
sampling plan may be expressed as a linear combination of the two risks,
7&9(p1) + 72P(pz) say. From a Bayesian point of view 7, equals the¢ product
of the prior probability of Ps and the corresponding decision loss.

1f the costs of sampling inspection are proportional to the sample size and
we sample a lot of size N we may therefore write the average costs in the

standard form
R(N,n,c) = n + (N-0)(7,Q(p)) + 7,P(py))

vhere 7 2 0 and 75 2 0, We shall use this cost function in the comparison of
the various systems of sampling plans.

In section 2 it is shown how R may be interpreted as the average costs when (1)
samples are drawn without replacement (2) from lots produced under binomial
control but with a process average varying at random from P, to Py, i1.e. the
prior distridution of lot quality is a double binomial, end (3) costs are
linear in the number of defectives, the sample size and the lot size. Apart
from a term of order .-N the function R may thus be interpreted as the usual

-
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"risk" in decision theory. The model covers rectifying as well as non-
rectifying inspection,

In seccions 3 and 4 asymptotic expansions are derived for the producer’s and

the consumer’s risk and for their ratio.

Section 5 gives a minimizaiion theorem from which the relation between 1ot

cize and sanple sizec may be found.

In the remaining part of the paper we discuss ten systems of sampling plans
defined as follows:

1). Bayesian pians, i.e. plans minimizing R.

Restricted Bayesian plams, i.e. plans minimizing R under some suitably chosen

restriction on the operating characteristic, viz,

(2). Min R for Q(p ) = aor P(p7) = B,

(3) Min R for P(p.) = 1/2 where p.= (log—\ /(lo pzqq
' 0 g X

(6). Min R for Q(p,) = a/N or P(p,} = B/N.

(5). Min R for P(pz)/Q(Pl) = p,

Plans defined by iwo risks, vie,
(6). Q(p)) = o/N and P(p,) = B/N.

. Q(py) = « and P(p,) = B/t (or P(p,) = B and Q(p,) = af/N) .
(8). P(py) = 1/2 and Q(p,) = «/N (or P(p,) = B/N).
(9)° Q(pl) = a m P(pz) = B'

Finally we consider percencage inspection defincd as

(10). n= uyNand c = Poh-

In all these definitions a,B,p, and u represent suitably chosen positive

constants which may be different from case co case.

For each system of sampling plans it is shown how the exact solution may be
o>tained and, since this solution is an implicit one, an explicit solution

is given as an asymptotic expansion for N => w,

The advantages of the asymptotic solution are that (1) it clearly shows how
the sampling plan, the two risks, and the costs depend on the parameters, (2)
it gives good approximations to the exact solution even for quite small
values of c (normally sufficiently accurate for ¢ 2 2), (3) it may be used

for developing interpolation and extrapolation formulas in conneccion with
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"master tabies" of the exact solution, and (4) it shows the sensitivity of the
solution with respect to changes of the paramecters. We shall here mainly
discuss the first of thece points, With respect to the other three and a de-

tailed discussion of tables the reader is referred to (9], (11), and [12].

The systens defined by (1) - (8) fall into two classes depending on whether
1

Yoth risks are ogu'lz or one of the risks is congtant and the other is Q‘N- DLE

The firsc clags ~oniains systems (1), (3), (4), (5), (6), and (8). It is proved

tha. asymptotically the relation betueen acceptance number and sample size
-1

1
has the form ¢ = Po™ -~ az+ a,n + O(n ), that In N = %" + Eln n + x1+ nzn '+Q(n ),
which by inversion determines n as a function of N, and that R = n + 81+ Szn +0(n ),

che constants Po and % being the same in all cases (depending on(pl,pz)only),
whereas the remaining constants are found as functions of the parameters in the
model and the restriction., This means that n = O(ln N) and that the average
decision loss, (N-n)(le(pl) + 72P(p2)), tends to a constant (because Q(pl) and
2(p,) are o(N” ))

The _second class consis:is of systems (2) and (7). Ic is proved cha: asympiotical-

ly the relation between ac-eptance number and sanplc size has the form

S 12 -3/2

¢ ow pjn + I a;n + 0(n ) B pj representing the quality level having
i=1 1 L 1-1/2 -3/2

a constant risk, that ln N = wjn + ‘n n+ I kmn + 0(n ), which

‘:l
dccernines n as a funciion of N, and thac R = 8N + (1-8)n + 61+ 0(n

-1/2)’

the constants wj and 3 bcing the sauc in _he two cases. Because of che constant
risk all relations are -considerably more complicated than for the first class
and R becomes Q(N) inscead of O(ln N). For large lots i: must therefore be
seriously considercd whecher it is reasonable to use a system with a fixed
consumer’s or producer’s risk and correspondingly high costs as coupared wich

a system having decreasing risks.

The system with both risks fixed and che sysiem with percentage inspection both

tcad to R = O(N) and asympiotically they have the same costs for p = 7, + 726.
The system with fixed risks uses a fixed sample size so that the decision loss
becomes of order N whercas percentage inspection has n = O(N) and a decision

loss of order e

For systems (2) and (3) we have the importanc rcsult that asympto:ically n
depends on (pl,pz) and N\ only where A is a function of Y1279) and the parameter
in the restriction. It cherefore suffices to tabulate n as a funcicion of N for

A~ 1, say, and usc chis table for A\ + 1 wich N“n N\ as argumen:.

WUriting B(c,np) for che ~unulative Poisson disiribuiion corresponding to B(c,n,p)

we have under Poisson conditions exactly and under binomial conditions for small




(pl,Pz) approximately that

Rp, = m + (M-m)(71(1-l(c,m)) + 723(C.m))

1
where n = np, M= Npl, and © = pzlpl. Resulis analogous to those stated above
are thcrefore valid in terms of M,m, and ¢ for given (r,71,72), i.e. we save
one parameter. It follows that under binomial conditions we have for systems
(1), (2), (3), and (5) the following "proporiionality law": The sanpling plan
corresponding to (N,xpl,sz) is approxima:ely equal to (n/),c) where (n,c) is

the plan corresponding .o (Nx,pl,pz).

For systems (6) - (9) we have similarly: The sampling plan corresponding co
(N,xpl,xPz) is approximately cquai to (n/\,c) where (n,c) is the plar correspond-
ing to (N,p,,P,).

These theorems greatiy reduce the tables neccessary fur applications of the

systens,

It is shown that the restricted Bayesian plans with both risks decrcasing and
the corresponding plans based on two risks all have an economic efficiency tend-
ing to 1 for N *> » as compared to the Bayesian plans. (The efficiency of plans
having at least one rigsk fixed tends to zero). This result means that wrong
values of the weights of the prior distribucion and wrong values of the cost
paramcters have a secondary influence on the efficiency which tends to 1 if
only (pl,pz) are correct. . . If also
wrong values of (pl,pz), (pl,pz) say, are use?d fcr finding t?e plans, then the
efficiency tends to e, 0 < e <1, 1f and only if Py < P < P, < Py, otherwise
the efficiency tends to O.

The present model leads to a constant ratio of the producer’s and the consumer’s
rigk for the (Bayesian) sampling plans. This provides a motivation for the rule

of thumb suggested by Lehmann [14] for obiaining a reasonable balance beiween

thc probabilities of errors of the first and second kind in testing the hypothesis

PP against the aiternacive p = Py

2. The model,

Let N and n denote lot sizc and sample siz¢ and let X ard x denote number of
defeccives in the 10:- and the sample, respe -ively. The acceptance number is

denoced by c

Consider the following linear cost funccion
nS + xS+ (N-n)A+ (X-x)A,  for x § ¢
h(X,x,N,r,c) = (1)

insl+ x52+ (N-n)R + (X-x)R2 for x > ¢
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cnd let tho (prior) distribution of lot quality be fN(X). The average costs then

become
K(N,n,c) -~ 2 Z h(X,x) p(X,x)

where p(X,x}) = f£ (X)( )(X x) /(X - SN,n(x) p(X|x]},

n(x) giving the (marginal) probability of getting x defectives in the sample,
i.c.

e e )(“'“)/( Ny )
gN,n(x) (x) yao N +y y x+y’*

This compound hypergeometric distribution has been discussed in [8] vhere the

following results were proved:

(r) (s) (r+s)
E “(r) (x'*)k ) }- = E {%(r+s)} (3)
n (N-n) B N
and E{ QE°X) :r) < . (x+r)(r) 8N,.n+r(x+r) ] ({')
(N-n) r) J (n+r)(r) g (x)
N,n
c
Uriting GN n(c) = I By (x) we find
’ x=0 T
K(N,n,c) = nS1 + E{x]S2 + (N-n) AIGN,n(C) + Rl(l-GN,n(c))]
c n
+ A2 I gN,n(x)E{x-xlx] + R2 E gN’n(x)E[X-xIx]. (5)
X=0 x=c+l

The last two terms of (5) may be simplified by using (4) for r = 1 which gives

x+1

nel BN, nel (FFD)

8y, n OE(X-x|x) = (¥-n) T

The average costs are obviously a rather complicated function of n and ¢ and
in general also of N, It is easy to see, however, that the necessary and sufficient

condition for K to be a linear function of N for all values of (n,c) and all

values of the cost parameters is that g (x) is inJependent of N.
N,n

From g’s independence of N follows that E(x(r)/n(r)] is independent of N so

that (3) gives

x(™y -y a for N2, (%)

say, where G does not depend on N,

=il
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To find the class of distributions EN(X) satisfying (0) we introduce the
limiting cumulativc distribution of X/N defined by

)
Wep) = lim I £.(X) , a)
N~> o x=0

Proceeding as in [8] we find that

)
a = [ pidu(p)

0]
and ]
N, N- "
£,0) = Q) [p" QN ) . ©)
0
It follows that 8y n(x) = fn(x), i.e. the prior distribution is 'reproduced" Ly
s

hypergeometric sampling. (A discussion of reproducible digstributions has been given
in [8]).

We shall therefore get particularly simple results by limiting_the_prior

distributions to the clasgs of distributions given by (3), called mixed binomial

distributions.
Writing b(x,n,p) = (:)panux and
c
P(p) = B(c,n,p) = T b(x,n,p) (9)
x=0
we get
x+1
mb(’ﬂ'l,lﬂd,p) z p b(x,n,p)
and from (5) 1
K(N,n,c) = [ K(N,n,c,p)dw(p) (10)
0
where

K(N,n,c,p) = n(5,+5,p) + (N-n)F\ﬁAzp)P(p) + R+ Rzp)Q(p)]- (11)

The assumption of a mixed binomial prior distribution means that each lot is
produced under binomial cortrol and that the process average varies at random
from lot to lot according to the cumulative distribution function W(p).
Correspundingly the average costs (l1) represent an average over all lots with
a given process average, i.c., a conditional average, and (10) gives the over-all

average,

Begsides giving the exact average costs for a mixed binomial prior distribution
(10) and (11) may be interpreted as giving an cpproximation to the average costs
for large N for any prior distribution satisfying (7)., This follows from the
facts that the hypergecometric distribution tends to the binomial for N —> «,
n—>w, n/N—>0 and X = Np, p fixed, and that x : np + O(vn), so that (1)



becomes
- n(sl + Szp) + (N - n)(A1 + Azp)
n(S1 + Szp) + (N - n)(R1 + Rzp)

disregarding terms of order \n, The limit theorems derived in the following
on the basis of (10) and (11) are therefore valid in general.

The model may easily be generalized from a linear to a polynomial cost function.
Consider for example the term (X - x)A2 vhich gives the contribution
1

(N - n)a, [ p P(p) dW(p)
0

to the average costs, Introducing instead
m
(v)

b3 AZV X - x)

vel

we find by using (4) the following average costs

m c (v)

(v) (x+v)
T A, (N -n) B 8 (x+v).
vel 2v X0 (n+v)(v) vy

The condition for the average costs to be a polynomial in N is, as above, that

g does not depend on N, For a mixed binomial prior distribution we get

5 (v) Ty
2 AZV(N - n) / p P(p) dW(p).
vel 0o

Treating all six terms of (1) analogously we find the generalized average costs

are given by (10) if we replace (11) by

m
K(N,n,c,p) = I

(v) v
n (slv + stp )
v=l

m
. (V) v v 1
+VEI(N n) T (AL A, POR(P) + (R, 4R, P)Q(P)|. (12)
Another generalization which is easily carried out consiats of replacing (8) by

1
G / phq X W (p) (13)

n

£y X)

where the comulative distribution function HN(p) dep2nds on N. This will only

result in a corresponding change of (10).

In the following we shall, however, mainly discuss the cost function defined
by (10) and (11).
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To simplify the no:acion we introduce the chree costc functions

k,(P) = A+ Ajp,  k (p) = R+ Ryp, Kk (p) = 5.+ 5,p, (14)

and che corresponding averages ka’kr’ and ks, defined by

1
k = [k(p)d¥(p). (15)
0

If the equation ka(p) o kr(p) has a solution p = Py in the interval (0,1) we
define

pr 1
k= é ka(p)'dw(p) + {) kr(p)dW(p) (16)
r

which represents ihe average costs per item when all lots from processes with
p s p, are accep-ed and all other locs are rejected. The fraction defective

Py is called the (economic) break-even quali:y.

Defining the standardized form of (10) as

R(N,n,c) = (K(N,n,c) - Nkm)/(ks- km) (17)
wve find
AZ*R ' pr 1 3
R=n+ (N-n) L -k 'lf (Pr'P)Q(P)dW(P) + (P'Pr)P(P)dW(P)J (18)
s m - P
0 r

Using ks- km as "economic unit" the two ierms of (18) represent the cosis of

sampling inspection and the average decision losses, respeccively.

In the remainder of the paper ic¢ will be assumed that the prior distribution

is a double binomial discribution, or as a limiting case, a single binomial.

The double binomial distribution is a weighted average of two binomials with
parameters p, and Py p1< Py) and weights w, and Vy) w1+ w," 1, i.e. the rrocess

average has a two-point cdistribution.

The standardized averape costs may then be written as

R(N,n,c) = n+ (N-n) (7,Q(p)) + 7,P(p,)) (19

where
7" "1(kr("1)°ka(p1))/(ks' km) and 757 "z(ka("z)"‘r(pz))/(ks.'kn)' (20)

It will be noted that the average decision loss per item is a linear combination

of the producer’s risk, Q(pl), and the consumer’s risk, P(pz).

The standardized costs of accepting or rejeciing all lots without inspection

are Ra‘ N72 and Rr= N71’ respectively,



3. An asymptotic cxpansicn for the binomial distribution,

There exist several asymptotic expansions for 1-B(c,n,p), ¢ = [npO] and p < py
for n => », see for example Blackwell and Hodges (1] and Brockwell [2). We need,
however, an expansion under the assumpiion chat c¢/n = po+ e, € >0 for n =>w,

and shall use the same method as Brockwell co prove

Theorem 1, Let

4
¢/n=p. .+ I a n'i/2 + O(n.slz). (21)
0 i =
i=1
For p > Pg ¥e have
9P . 172, -5/2.\)
B(c,n,p) = T exp {-n(¢(py,pP) + L bi(po,p)n +0(n ))J (22)
lp-py | /2mpq, i=1
where o qo
&
0 9
PAq Paq 52
b1= alln-g- p bz- azlu 9 + 3 L :
¥ 0P " 2oty
3
poq a, a1(1+232) al(qo-po)
b3‘~’ 831uq = - P-p + 2}) q - 2
0 0 00 b(poqo)
2 2
v.q a a.-2p.q a,+a,+2a.a
ba'_: aaln-g—‘ O .—2 ) _1—-—0—2. + —Lzz-—-]-'-—3
2, 3 3.4
N l-poqo ] (qo-po)a1(1+2a2) . (p0+qo)a1
i2p.q 2 3
070 a(Poqo) 12(poqo)

Fo. p < Po che same  expression i{s valid for 1-B(c,n,p).

Proof. Writing ¢ = nh and using Stirling’s formula we get

1-h(l-h) -3

in(?) = -% In(2nnh(1-0) - n(h 1n b+ (1-)la(l-n) - SRR 4 on™)
so that
In b(cjn,p) -~%1n(2nnh(1-h)) - no(h,p) - %5%%%%¥%7 + o(n”d)
where h 1-h 23)

s(h p) = h In= 4+ (l-h)iIn=— ,
(b, p) "p (1-h) In 5

Expanding ¢(h,p) in a Taylor series around Po and inserting the given expression

for h-po we find

L2 13 )n-3/2

. 12 . -1
o(h,p) = ogt ajo)n T+ (ay9)+ 231000 T+ (250,+ a)8)0,+ Eale,

12

12 1l 4 . -2 -5/2
* (a0 + gt aay)ept 8189y g5 2900 T+ 20 T

whcre 9= (diwlahi)hsp . Similarly we have
(o)




2,2, -2

( Py)3; (q-p)a (p+q)a\ .
In(h(1-h))= In(pyqy) + o, ( 0_0 00 L1, onm/?
poqom Po%% 2(pdlo) /
and
1-h(1-h) _ 1“Po% + 032

12nh(1-h) 12npq, ~ =

Combining these cxpressions wc get an expansion for ln b(c,n,p) with remainder

cermn of order n'3/2.

Expressing the binomiai by the incompletc Beiafunction we have

c n c-1

B(c,n,p) = (n- c)( ) f(l- dx.

Changing the variable the integral becoiecs

e-nzf(z)dz
0
where z = -h In(y-1i) + ln y and f(z) = yh dy/dz Integrating by parts leads to

® h N
f (y-l)cy-n ldy = f .(l'_"l.. dy =
1/q 1/q Ny VAR /

~N— 8

]

-nzo

-nz, .1 1., -2
e f(z)dz ;e (f(zo) + nf (zo) + 0(n 7)).

N -

0

As z, is found from z for y = 1/q we have 24" -h In p - (1-h)1ln q and
-nz

¢ %= pq"/n. From
£(z) = (y-1)/(y(1-h)-1)
we get
£(2) = -hy(y-1)/(y(1-h)-1)°

3o that

1 hq
f£(z.) + = f°(2.) = 1-
0 n o -h \ n(p- h)

Combining the results obiained we have

)
B(c,n,p) = blc,n, p)‘(—)'P-< +om’Y . (24)
n([.- h‘ /

Expanding the logarithm of the factor to b(c,n.p) around Py Ve find

ln Benp) . P n o/

b(c,n,p) P-Pg 'M \P-Py Gy
1/ 2  317%9 4, ai 3/2
+ - \pp + 3 - )¢ o( )
0 2(p-p.) % 2qo
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which result together with the expansion for ln b(c,n,p) after some reductions

lead to the theorem.
A similar procedure leads to the result for 1-B(c,n,p).

It is obvious that the expansion may be continued by using the same mcthod

and that the following terms are of the same type as those given in theorem 1,

4. The ratio of the consumer’s to the producer’s risk,

From theorem 1 i: foliows that both the consumer’s risk, P(pz) - B(c,n,pz), and

the producer’s risk, Q(pl) = I-B(c,n,pl), cend exponentially to zero for n => ®

and p1< p0< p2 sin-e @(po,pl) > 0 and @(po)pz) >0,

To discuss the ratio wec introduce |

P,9q q
5(p) = o(p,py)-o(p,pp) = p In 2h - an L, (25)
L 2

6 = 5(P0) and &’ = ln(pqu/plqz). I: follows from theorem 1 that

0
P(p) P, (P~-P,) a,(p,-p,)
2’ 20 *1 . ) 1\P27Py) N
= ln —S————2= 4 nb +{fa ’+a.8+ 5+ i
L L7 a,(p,-p)) "?'2"0“2 "f'z"o“l\ -3/2
n \% (P,-Pgy) (Py-P;) =

2 2
2(p2-po) 2(p0-pj) /

nd
For 84 O we find chat P(p,)/Q(p)) = O(e 0), so that one of the risks tends

cxponentially faster to zero than the other.

For .= 0 and a = O we have that P(pz)/Q(pl\ cends to a constanc.

(o)
By means of the above expression we shall prove
9N\ Pyq
Theorem 2, Let ¢ = np + a, and p.= | In e § <ln _Z_l\. Then
e 0 "2 0 q,,/ P19,

a

P(p.) i (Pg Py ) < qu\z el
Q(p)  p;(p,- po) P19y, G

L

2 2
q,P q,P 3
c-a, \ Pz po 0771 (py-py) " (pyp))

For small 2 and Py and a," -2/3 we have approximately P(po) = 1/2 and P(pz) = Q(pl).
P:oof. The first part of che theorem follows from (26) for 60- al- a3- aan 0.

The second paric is found by letting r=> O for fixed r = p2/p1' Noting chat
Po/P; => (r-1)/In r and introducing

S o e e | e o Sl
81 r-l-lnr 82 r ln r-r+l

e ’ . L e A SOOI . psmimy < O



we find
P(p,) a+l g
2 2 2 1 -3/2
Qlp,) z b &, L ca, (8)+ 8,)(3,+ 8y~ 8,) }’* o )
which for r < 20 is approximately equal to
P(p,) a,+2/3
2 2 | 1 2,1 o
Q(pl) « T Ll + c-a, (gl+ gz)(az+ 3)j. (22)

1/3

The last resuit rests on the (numerical) fact that r g2/g1 « 1 and By - 8y * ?/3

for r < 20 as wiil be seen from the following table,

Table of 81, 82, and t1/3 82/81

1/3

r 8 8, 88 8+, v g,/e,
1 o o 0.57 0 1.00

2 3,25 2,59 0.67 5.C5 1,00

3 2,22 1. 54 0.68 3.76 1.00

5 1.67 0. 99 0.68 2,55 1.0l

7 1.48 0.7 0.9 2529 1.02
10 1.34 0. 54 0.70 1.3 1.03
15 1.24 C.53 0.71 1.77 1.05
20 1.1¢ 0.46 0.73 1.5 1.0

Since the equation B(c,n,p.) = 1/2 has the solution ¢ :- np. - (2 - p )3 + O(n'l)
g 0 o 0 a ’

see section G, the last part of the theorem is proved,

Theorem 2 implies that a sysiem of sampling plans defined (partially) by the relation

¢ = np, + a, will have a ratio P(;2)/Q(p1)tending decreasingly or increasingly to

2
a constant according as a, is larger or smaller than-2/3 respectively. If Po differs

from the value defined in theoren 2 thenP(pz)/Q(pl) will tend exponentially to

zero or infinity. .

From (26) we also find
4 .

+ T ain.l/2 + g(n-slz). Then P(pz)/Q(pl) is constant
i-1

(to the order of approximation here considered), i.e.

Theorem 3, Let c¢/n = Po

&

P(pz) p?(po—pl) /pqu\ 2 _3/2
g t ' (1 + O(n ) 29)

Q(pl) pl(pz-po) P19,, . < ,

if and only if p_ = (ln E-l')/ln (3221\ , a, =a_, =0, and
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a 2 82 Posy P02 3 -
4 - - ‘8—, p .p + p -P + 2 - 2 . ( O)
01 270 (pyp)) (Py-Py)

For small Py and p, we have approximately

¢ & np, + a8, - (31+ gz)(02+ 2/3)/(np01n r)

a+ 2/3
and P(pz)/Q(pl) = T where r = pzlpl.

Prcof. The main result follows directly from (20) and the approximation is found

by similar considerations as under theorem 2.

5. A minimization theorem,

For use in later sections we need

Theorem 4, The minimum of

R(n) = n<+ (N - n)kn-llzf(n) (31)
4 /2 |
where f(n) = exp(-n L cxin.i i A > 0 and o > 0, with respect ton for N—> o
i=0
is equal to
a a2 - 2a.~\ 3/2
MM=n+LOJ L, 10 ,ow?d? (32)
a 2a_\n 2 g = ’
0 0 ba n -
0
n being detcrmined as a function of N from the equation
1 b -1/2 -3/2
In(N-n) = - In)+ < Ilnn+nla_.n + O(n ) (33)
2 i0 =
i=0
where ap = aj, % o=@, o= e, - Inag, G = A, - a1/200, and
. 2, 2
Yo = % T 1/?a0 + a1/830 .

Proof, From

/ -3/

RP@) =1 - wn Y26m) + @ - n)ow Y287 (n) - %x 2¢(m)) = 0

we get

’ -1 N\
o - o Y@y - < JEm L (1 - xn-llzf(n)).

It follows that n —> o for N —> o,

Since :
() 1 1 1 -3/2
fmtm T % tTa tamtom )




and 1 - xn-llzf(n) = 1+ Q(e'n) we find

-1
-1/2 “ 1 -3/2\
(N - n)An f(n) (czo + Z\n + o 2+ o(n )/u
a as - 2a
- 1-(1 R 9\ 4 o2 (34)
"0 0 4aon /

which immediately gives min R. Taking logarithms on both sides of the last cquation

we obtain the equation for dctermining n.

Inversion of this equation gives

1/72 1 1 .-1/2 -1/2, 1 -1 -1 -1 .
agh = X - le - Eln X + Bzi-zﬁlx / In x + B3x / + 72X In x + ﬁax + o(x ), (55)
- 1S3 ad -1/2 = l 2 -3— ‘
where x = In N, Bl 1% ; BZ = 251- ) + 2ln %0 + ln) ,
- IS E 23 i
By = B = 2P +2B1% - g Uyt 7By Inag - 3By Ina,
1 3.2 1 3 1
B =2 " gP1 2% " %% Tt ot 2ln b

which determines the value of n in min R,

The importance of theorem 4 is due to the4fact that the asymptotic form of

R(N,n,c) after elimination of c = np, + I ainl'll2
i=1

(32) then tells that the minimum standardized costs asymptotically consist of

is equal to (31). The result

sampling ingpection costs plus a term tending to a constant which represents the

limiting avecrage decision !losses for the remainder of the lot.

An important corollary is found by noting from (33) that asymptotically n depends
only on 1n(N)), i.e., on the product of the lot size and the parameter ). If sample
size has been tabulated as function of lot size for one value of A\, X = 1 say,

we may therefore use the same table to find the samplc size corresponding to lot

size N and any )\ by using N* == N\ as argument,

2. Bayesian sipgle sampling plans,

The Baycsian solution consists of determining the value of (n,c) minimizing
R(N,n,c) and using this sampling plan if min R is less than the costs of
accepting or rejecting all lots without inspection, / neccessary condition for a

sampling plan to exist is that 7 > 0 and 79 >0, i.e. Py < P, < Pye

Values of (n,c) minimizing R must satisfy the two incqualities



g

ACR(N,n,c-I) 2 0< AbR(N,n,c), Osc $n,
and |

AnR(N,n-l,c) £0K< AbR(N,n,c), csnsN, |

A denoting the usual forward difference operator., Noting that AbB(c,n,p) -
b(c + 1,n,p) and an(c,n,p) = -pb(c,n,p) we find from (19)

AR(Nyn,c) = (N-n)(-7,b(c+l,n,p )+ 7,b(c+l,n,p,))
and

AnR(N,n,C) = 1 '(71Q(P1)+72P(P2)) + (N'n'l)(71p1b(c)n!p1)'72p2b(C)n)pz)).

Solving the incqualitics with respect to n and N we find that a Bayesian sampling

plon must satisfy the two inequalities

a4+ Bc = n<a+ f(ctl) (35)
and
F(n-1,c) = N < F(n,c) (37)
where 79 q, ‘
a = (ln=—)/(ln =), (33) ‘
7 9
P291 9
B (In q2p1) / (ln q2) ) (39)
and

1-71+713(c,n,p1)- 728(c,n,p2)
'71p1b(c)n’pl) + 72p2b(c,n,p2)

F(n,c) = n + 1 +

For two plans (nl,cl) and (nz,cz), ¢, < ¢, say, satisfying (36) and having over-

lapping N-intervals according to (37) the cost functions must be compared. Solving

the cquation R(N,nl,cl) = R(N,nz,cz) for N we get
- (ny=ny ) (A7 )+ nyy(ny,c,)- nyy(ng,c)
12 7(“2)c2) - 7(nl)cl)

where |

7(n,c) = 7,B(c,n,py) - 7,B(c,n,p,).

Since R for given (n,c) is an increasing linear function of N we have that

< . X
R(N,nl,cl) S R(N,nz,cz) according as N g le.

It will be noted that the simplicity of the solution depends essentially on

R(N,n,c) being a linear function of N for given (n,c).

The above solution has previously been given in [}3] and a rather complete tabulation

of Bayesian sampling plans has been provided in |}1].
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The exact solution given above does not disclose the structure of the relation-

ships between N,n, and c, We shall therefore derive an asymptotic selution,

Setting ¢/n = Po +¢, 8=—>0 for n —> o, we shall first find Po and € and

afterwards determine the relation between N and n by means of theorem 4,

Using (24) and the expansion of b(c,n,p) we get for Po <p

q,P

0 -1

B(c,n,p) = ———— exp (~no(pgtc,p) + 0(c) + O(n ))
Ip'pol ] zﬂnpqu

and the same expression for 1 - B(c,n,p) for Po > p. For P < Po < p, we thercfore
have the following asymptotic cxpansion for the cost function

2
Ren 4-(l‘l-n)n-1/2 LNy exp[-nw(PO,Pi)-newi + 0(c) + g(n-l)] (40)

wh i=1

ere
>"1 = q0p17i/ Ipo'pil\lzﬂpoqo (41)
and

b = ) =

o ¢’ (PysPy) ln(poqi/qopi). (42)

By means of this expression and theorem 4 we shall prove

Theorem 5. For the Bayesian single sampling plans we have

-2
¢ = np, + 2, 4 aa/n + 0(n ) (43)
where
q, P4,
Po ™ (In -—) / (In ----) , (44)
92 P19
1Y% a a Pnd P4 "
a,= %7 In xl?%;7y and a,= -%7'(3-7%—-b - ?P y 21 5 - 92 > . (45)
N { . s
2 0"l 270 (py-py) (py-g)
Further
1 .
4
o 2(9 (45)
In(N-n) = 0 n+ -;-ln n+ Ay l -ln(cp A \)’/1-({)2)) +(a U’+Bl 1/2<p )- +O(n ) (%))
Qp,) = B S W o™?yy =L (48)
i -— -
1 07]5 Zqon N-n
and ¢
1 1 -2 1
A Sl B . —— [ /
P(p,) AT Qa Zo,n +0(n 7)) T (<)



where
Py Wb
¢O - po In p—i 4 qo 1n qi P i=1o0or 2 ) (SO)
and 2
a,+a, 1-pody 8, Pody
0% o% i Po (p,-py)

Proof, For P; < Py < Py it follows from (40) that R/N —> O for N=> o, n —™> o,
and n/N —> 0. For Py < P, we have that Q(pl) —> 1 and P(p,) —> O eo that

R/N —> 7 > 0. For Po ~ Py We may usc the normal approximation which gives that
r(pl) —>u¢ , 0 < « <1, so that R/N —> g > 0. The optimum value of Po satisfics

conscquently the inequality Py < P < Py-

It is casy to see (indirectly) that the optimum valuc ol Py must satisfy the
equation w(po,pl) = w(po,pz) which leads to (44) becausc any ocher choice of Po

will make onc of the exponential terms in (40) larger then exp{-n@ol.

To find 2 first approximation to ¢ we put dR/de = O which gives

~N

—

"n‘:({‘f
1
xo! e O.
e 11
i=1

Solving for 2 ne we get the first part of (45), i.e. ¢ = npy + a, + o(l) as

, °
could be gxpected from (30) since Po = 1/8.

To gec onc more term we write c¢/n - + (a2+c)/n, e —> 0, and repeat the

P
0
proccdure o find the new €, Using the same method as in scction 3 we may develop
(40) into

; 2
DY cxp{-nqo~azo;-(nr@;+ﬁi)ln 4 0(e/n)+0(n )}

i=1 *\}

where ﬁi has been defined in (51). From dR/de = O we find the equation

R = n -0-(N--n)n-1/2

- n: we get the second part of (45).

nC?i+ 61 : ntwé+¢§ . Solving for 8 "

The remaining part of the theorem is a direct consequence of theorem 4 for

- = L ’ = a.w! - - ’
0 Yo % = - In(yy 2992 - In(-19)),
e akmd = a,m? and &/ (-9pl¢?).

) S ARy FURy = 8ty [HEEea [ (-01%;

It will be noted that asymptotically the ratio between the consumer’s and the

producer’s risk is constant for thc Bayesian plans, viz,
P ’ ~w? [
(®,)/Qp)) 710177, €-93), (52)

cf. Theorem 3,

&




From (35) one could hope that n= a + f(c + %) and consequently that a, = -pyae 1/2.
In [11] it has been demonstrated numerically that this approximation is rather
good. We shall now derive the limiting values of 3, and a, for P, > O and

r-= pz/p1 fixed, and use the result to discuss the approximation above.

Proceeding as in section 4 we find

o .
2 Inr In r gzln((g2+l)/g2)

and
ponl; _—> '(81 + gz)(az + gl - gz)/‘»“ r.

The last term in lim a, decrecascs from 0.50 to 0.47 as r increases from 1 to 20,

f.e. the .ast term is prac:ically equal to 1/2.

For small Py and p, we therefore have approximatcly

c=* np. + iﬁfi}/y?) Ly L = (g,45,)(=, + 2/3) + O(n-z)
0 In r 2 npoln r -1 22772 = *

The lraction of the average dccision loss which is'due tc'" the consumer’s risk
equals @i/&’. This fraction tends o (In(r-1)-1n In ¢)/In r {or pp >0

(r = p2/p1 fixed), and increcscs from G.50 to 0.52 as r increases from 1 to 2C,

7, Rescricted Bayesian sampling plans,

One.-of the objections agzainst the Bryesian solution is that it does not always
lead to a sampling plan, particularly for smell lots. In such cases a running check
on the assumptions regarding the prior distribution is lacking and, if quality

deteriorates, the delay before appropriate measures can be taken may be excessive,

There m~ry also be cases where a producer, say, inspectiog his own goods sets an

upper limit for the probability of passing bad lots.

It is thercfore useful to study restricted Bayesian solutions derived by minimizing
avecage cost., under a2 suitably choscn restriction, Such restrictions may be of an
cconomical, technical, or stntistical nature. We shall here, however, cnly consider

restrictions on thc operating characteristic, i.c. restrictions which arc independatit

of the weights in the prior distribution and the cost functions.

The first restriction of thar kind was introduced by Dodge and Romig [ 4 ] in their
LTPD system of sampling plans. For the present model it consists in specifying
P(pz) g, where ¢ customarily is chosen as 0.10. Correspondingly, one may choose

to specify Q(pl) = a with « = 0,05, say,
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It follows from the propertier of the Bayesian sampling plans that, at least

for large lots, it will be uneconomical to specify a fixed risk for the consumer

or the producer. Instead, the risk should be chosen as o decreasing function cf
< -

for N = No and P(pz) BONOIN for N> N

o? ©OF
, which

lot size, for example as P(pz) - Bo

similarly as Q(pl) = o for N s No and Q(Pl) = aONO/N for N> NO

asymptoticclly corresponds to (43) and (49).

Another possibility is to specify P(po) = 1/2 for P <Pg <P which will lead
to decrecasing risks both for the producer and the consumer, 1f Po is chosen
as in (44) both risks will be O(1/N), otherwise they will temd to zero with

different rates of convergence,

Finally one may specify the ratio between the two risks, i.e. Q(pl) = pP(pz),
which also results in decreasing risks with increasing lot size. The correspordin,,

Bayesian result is given by (52).

It will be seen that it is possible (inspired by the asymptotic properties of the

Bayesian sampling plans) to introduce restrictions on the operating characteristic

which will change the Bayesian solution for small lots in a desired direction ~nd ¢t

the same time preserve the properties of the Bayesian solution for large lots.

It should be noted that restricted Bayesian plans exist also if one of the
parameters 71 and 7y is zero which means that the double binomial prior
distribution decgenerates to a single binomial. The other quality level is then
introduced through the restriction with the purpose to avoid too heavy losses 1if
the prior distribution changes., In sections 8 - 11 we shall discuss the propertics

of the various types of restricted Bayesian sampling plans.

8. Minimum average costs for fixed consumer’s or producer’s risk,

We shall limit the mathematical discussion to the cose with a fixed consumer’s

risk s.nce the two cases are completely analogous.

Ingserting P(pz) = B into (19) we get

R(N,n,c) = n(l - 72ﬁ) + (N - n)71Q(pl) + N72B

= (1 - 7,B)R, + Ny,B (53)
where

R, = n+ (N - n)7Q(p1), A 71/(1 -72ﬁ). (54)

The problem is to minimize R or equivalently R1 under the restriction
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P(pz) B(c,n)pz) = B‘
Since (55) defines a relation between n and ¢, n - n, say, (which is unique
if n is determined as the smallest integer satisfying B(c,n,pz) < §) we may
write R1 28 a function of ¢

Rl(c) = 0 + (N - nc)7(1 : Bc)
where Bc : B(c,nc,pl). The value of ¢ minimizing Rl is decermined from the
inequality ARl(c 1) 0 < .Rl(c). As

ARI(C) = (1 -7+ 7Bc)[\nC - y(N - nc+1)[8c

we define the auxiliary function

Nc = 04 + (1/y -1 + Bc)/‘nc/’Bc
so that (nc,c) is the optimum plan for lot size N if NC'1 s N< Nc, ABc~1 >0
and AB_ > C.

c

These lormulas are well suited for a systematic tabulation since n, and Nc
are easily found for ¢ - C,!,7,...
The above solution hns previously been discussed and tcbulated in [}2]. A
similar approach has been used in [9], and by Dodge cnd Romig [ﬂ]. It will
be noted that the Dodge Romig LTPD plans are obtained for 7T 1 and 7y o Ow
the modification that Do‘lge and Romig use the hypergeometric distribution
insctead of the binomial in dcfining the restriction,
The ocsymptotic solution is given in
Theorem 5. The relation between acceptance number and sample size is given
» ; i/2 5/2

¢/n = py+ Lan 'Y 4o

i-1
where
1/2 I S PR 2_
al = -U(quz) » 32 = 2 + 6(q2 pz)(u 1))
1 -1/2,3 1,32 -1/2 2 3_5
83--‘2'2;(1'6P2q2)(P2q2) (u - 3u) + 36(q2 P2) (pzqz) (2u u):

T S . i e e TV | A S — e =

1 4 , 2 Ll e 4 o 2
{120(1-12p2q2)(u -6u”+3) 26(l opzqz)(u Su + 2)

1 2 4 2 }
] - - 1
+ 324(q2 p2) (12u S3u” + 7). ,

ith

(59)
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and u denotes the (l-B)-fractile of the standardized normal distribution,

The relation between sample sizc and lot size is given by (33) or (35), and

2
a a, -2 "
min R - (1-7.0) dn + (1 - b=t L0y} 4y am 4 02y (1)
2 L a 2a \rﬁ 2 2
0 0 aaon
and 2
1-/,.8 u ay=2a .
Ap) = = ,,2-(1-2, L1200 3”)) =, (52
170 “oY 4a n
0]
where ¢y ¢(p2,pl), Yy bi(pz’pl) for i 2 1,

and L = (7q,P) )/ ((Py-P,)V 21P,q,).

Proof. The asymptotic solution to (55) may be found from the Fisher-Corrish [SJ
expansion which leads to (50) since x3/02 =q-0p, KLIOZ =1 - 5pq, and

wsloz = (q-p)(1-12pq) for the binomial. The u-polynomials have been tabulated
as functions of § in [uJ.

The remaining part of the proof consists of a direct application of thecorems 1

and 4,

finalogous results for the case with 7 - 1, 7, " 0 ond Poisson probabilitics
have been given in [9] which also contains an evzluation of the accuracy of th:
asymptotic solution. In the present paper the expansion has, however, beon

carried two terms further than in [9] and [12].

Since the producers risk tends (exponcentially) to zero and the consumer’s risk
is fixed the average decision loss tends to a constant plus 726N. This last
term will for large N beccome dominating also as compared to the costs of
sampling (which are of order 1n N) and for this reason plans with fixed

consumer’s or producer’s risk are uneconomical for large N,

An importaont result is that asymptotically the sampling plan depends only on

the product of lot size and cost parameter so that the plan for lot size N and

cost parameter y cquals the plan for lot size Ny and cost parameter 1. Since
this property holds with good approximation also for small N, tabulation of
such plans may be limited to y - 1 and y = 5, say, for LTPD plans, and to

y = 1 and 7y + 0,2 for AQL plans.

The present LTPD model generalizes the Dodge-Romig system of LTPD plans in
two respects: (1) the single binomial prior distribution hos been replnced
by a double binomial, (2) the sim)le cost function I = n + (N-n)Q(pI), which

perteing to rectifying inspection
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with the same costs for sampling inspection and sorting, |as been replaced
by R which allows a much broader interpretation including rectifying as well

as non-rectifying inspeccion,

In case w," 0, L.c. 7, 0, the quality level Py is futroduced through the
restriction alonc, which means that P, has to be determined from ccchnical

and economical consideracions and not from the prior distribuction.

A detailed discussion of both LTPD and AQL plans and a comparison wiih other
systems has been given in [12].

9, Minimum average coscs for P(po) = 1/2,

The restriction
P(po) = B(C,n,po) - 1/2: P1< P0< p2’

dcfines a relation between n and ¢, n = n_ say. Proceeding as in section § we

find that the plan (n_,c) is optimum for NC =N < NC where

-1

NC- N (1-71Q(p1) - 72P(p2))£nc/(71£Q(Pl) + 72AP(PZ));

Q(p)= 1 - B(c,n_,p,) and P(p,) = B(c,n_,p,).

In principle such IQL plans may be d¢fincd for any value of Py If no (technical)

rcasons exist for choosing a speciflic value ol it secms reasonabic ito determine

P
0
po such that R i{s minir: zed. From (26) .- ‘ollows that onc of the risks will
be infinitely snall as ~ompared to the ocher for n => » depending on which of
the two coefficiencs w(PO,Pl) and ¢(p0,p2) is the larger. If w(po,pz) z @(po,pl)
we find that min R~ 1 -+ 1/,(p0,pl), .

~9(pg,Py) /9(py,P))

Q(p) = Q(I/M), and P(p,) = O(N ).

Since n ~ (In N)/o(p ) it follows that min R will be minimized with respect

0’1
to Po for g(po,pl) being as large as possible, i.e. for w(po,pl) = w(po,pz),
which leads to Po @5 defined by (44). We shall thercfore only study IQL plans

for this value of Po-

Thcorem 7. The relation between acceptance number and sample size is given by

2-p4  (a5-pg) (19+32p,q,) .
S dr IO 0RO 90 , o(n™?. (59)
o 3 3260np0q0 =

The rclation betwecen samplc size and lot size is given by

[ -2 ,
)+ (b 7+ 2D, (50)

1n(N-n) np .+ L Inn - In()

o 2 %o
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»
ard
1 1 -2 !
min R = n 4+ —=(1 « ) + 0(n ), (61)
¢ 294N
0 0
A -a, ¢}
2%1 /. .1 ik -2\ 1
Q(pl) alireredl \1 + ;(b“ b41 20 ) ¢+ 0(n ) Nem (62)
0’1 0 ’
"3, "82%
where a,= -(Z-po)/3, béjv ba(po,pj), AoNe + lze , and
-a CP, -a fP,
. 2"1 At NPN
b‘{ (tzlkle + bzbzxz\. )/ .
Proof. The first pari of vhe theorem follows from (56) for B = 1/2, i.e. u = 0.
Let ¢/n = Po* a2/n + a(./n2 where a, and a, arc defined by (59). Then from theorem 1
we have
) -n ¢ -b /n N
R : n+ (N-n)n I/ZXe 0t (1 + O(n 2))
with the definitions of A and ba as given above. The remaining part of the
proof follows from theorcu &4,
Since a, is small we have practically c = npo-2/3 and consequently P(pz); Q(pl)
according to theorem 2,
The IQL plans arc the only plans with a fixed risk which lead to a reclationship
between ¢ and n of thc same type as the one for the Bayesian plans. The
cocfficients a, and a, are, however, different. As a result we find in the
IQL system P(pz)/Q(pl) a 1 whercas this racio in the Bayesian system cquals
) —en?
Because of the relation Q(pl) = P(PZ) we have
so that we may use che ICL plans defined by (po,p1,71+ 72) as an approximation
to the IQL plans defined by (pl,p2,7l,72) which nakes a tabulation much casier,
sec {12]. Plans for 7l+ 72+ 1 may be found wiih good approXimation from a table
for 7l+ 75" 1 by using N'= N(71+ 72) as argument,
The IQL plans considered here are gencralizacions of the plans discussed by
Heibull {17) and cabulaied by Markback [15) in the samc mannmer as the LTPD
plans are generalizations of the Dodge-Romig plans.
10. Minimun average costs for decreasing consumer’s or producer’s risk,
The restriction imposcd is of the form P(pz) = B(N), say, where fB(N) is a
given decreasing function of N tending to zcro.
c e



e T

- 24 -
We shall only trecat the case P(pz) - Bo for N s NO and P(pz) = BONO/N =~ /N
for N> N_ . For a specified decreasing producer’s risk we get analogous

0
results,

For N s No the theory has alrcady been given in section 8, For N > HO the
procedure for obtaining the exact solutlon is analogous to the one derived
in section 8 with thc (numerical) complicaiion that n,as defined Ly the
restriction,becomes a funciion of both ¢ and N, Therefore the auxiliary

function Nc has o be determined by iteracion for each c,
The asymptotic solution is given in

Theorem 8. The recla.ion between acceptance number and sample size is

c = np+ a+ aa/n + Q(n-z) where

o 2
Ny .9 BB
® 2, (-02) Y "0

Py’ @o, Bl’ and Sz being defined in (44), (50), and (51), respeciively,

The relaction between sanple size and lot size is given by

T e 2 o e O g Ty = b e o) e (65)
% > nn a0 n Xz 1,99 o+ 0n
and
(-5, 1 -2
min R = n+4+ Py, + —=(1l - =) + 0(n 7). (56)
2 V05 26,0 -

Proof. Writing c/m = p 4 ¢ it follows as in section 6 that Py < po< Py

0
Fron
A -n9 -ne¢’
2 -1/2 n@(po,pz) nes, B
B(C)n)pz) = n ¢ = N °’
7y

disregarding terms of "higher order", we find

.].'. r =
W (pgr Py + oln 0+ negl o ln(ﬁyzlxz) ln N, (67)

For given values of p_ and € chis gives a rclation between n and N, I. rcmains

[ ¢
0
to detcermine Po and < so that R is minimized.

Writing
R = n+ (N-n)7,P(py) ((7,Q(p))/ (7,P(py)) + 1)
we find
2N -nd _-ned’ N
- . n " 0
R=n-+ (1 N)@yz X ¢ + 1

2 Vi
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From (57) we have n ~ (ln N)/@(po,pz) so that Pe enters into R through n and
exp(-n&o). To determine the optimum value of Po consider first 50 = 0 which
gives Py 88 determined by (%44). As shown below we then determine € so that

‘nd ,
R+ n+ 0(l). For 50 < 0 we get e 0 - Q(N“), u > 0, which gives a larger R

theo for 50 = 0. For 80 >0 we find R ~ n + 0(1l) but since m(po,pz) < %y the

corresponding R will be larger than for & - O. Consecquently we have 60 OF

0

To determine £ we solve the cquation dR/dc = O taking into account that n
according to (o7) depends on ¢. Using On/d: nwélwo and solving for a, - n°

we pet the result given in (64).

To get one more term we intcocduce ¢/n = + (a? + £)/n and repeat the procecure

Po
to determine the new €, From

.1. p) ~n ) l -
Poh + 2ln n+ a0, + 1“(372/A2) + (B2 +n @z)n In N

and

A a8 -(B,-p,+n<8’)/n \
/71 2 1772 \
) 7,05 e + E)
N2

R = n+ (1

=12
o

ve get on/or - (-vé/co)(l - l/ZQOn) and solvirj the equation dR/de : O with

respect to ne we fin’ a, as given in (54).

Tha remaining part of the theorem follows by inserting the values of a, anc a,

in R,

This system of plans hes thus the same asymptotic properties as the Bayesian plans.
The essential difference between the two systems arises from the different
constant terms in the asymptotic relations between ¢ and n and lecween n and N

becruse chesce constants depend cu the (crbitrary) parameter §.

Ve may minimize min R with respect to g. Taking into account that n, 85, 3, and

4
Bz are functions of B we find the optimum value is 8 - wi/(¢0725’) as might be

cxpected from the Bayesian solution and furthermore min R = n + l/\p0 + Q(n-l).

11. Minimum average costs foi a fixed ratio of the consumer’s to the producer’s risk.

The restriction is given as P(p2) = pQ(pl) which naturally may be modified so
that for N £ N it is further required that P(pz) = g, say, and that P(pz) s B

0
for N 2 No.

The restriction defines n as a function of ¢ and the exact solution may therefore
be derived by the same method as used in section £, Since P(pl) > P(pz) it is

nccessary for a solution to exist that P(pz) < pl (14p0).

'

]



The asymptotic solution is given by

Theorem 9, The rclation betwecen acceptance number and sample size is
c = npy +a,+ a“/n + Q(n-z) where
M7#

a = | In —
)
2 8 X?’l

) (6C)

Ps and a, being defined in (44) and (30), respectively.

The relation between sample size and lot size is given by

- i 4 ) ) - _._1 l -2 .
1n(N-n) pon+ 2ln n+ 3,61 - ln(xw0)+ (36¢1-+81 2®0)“ + 0(n ") (59)
and
, 1 1 -2
minR = n4+— (1 - ) + 0(n ) (77)
P 2¢.n =
0 0
where A = xl(yl + 072)/7l and ﬁl is defined in (51).

-

Proof., The proof is similar to the one in section 6 making use of theorems 2 and
4,

Minimizing min R with respect to p gives 0 = (71®{)/(-72®5) which lecads back to

the Bayesian solution,

For p= 1 we find for small p. and P, that a, a -2/2 which means that we get

1 2
approximately the IQL plans discussed in scction 9,

12, S8ampling plans defined by two risks,

Suppose now that the weights of the prior distribution and the costs are unknown.
Ue then ask the question: Is it possible from knowledge of (pl,pz) alone to
definc systems of sampling plans having similar properties as the Bayesian anc

the restricted Bayesian plans?

By means of the asymptotic properties derived in the previous sections we may
construct threce systems with the required properties, each of thembeing defined

by specifying two risks:

A, Decreasing producer’s and consumer’s risk, i.e. Q(pl) = a/N and P(pz) = B/N,
which corresponls to the Bayesian plans in section 5 and the restricted

Bayesian plans in section 10 and 11,

LTPD plans with decrcasing producer’s risk (or AQL plans with decrecasing

-]

consumer’s risk), i.e. Q(pl) = /N and P(pz) = 3 (or Q(pl) = a and
P(pz) = 3/N), which corresponds to the plans discussed in section 8.

Al DY TR T TRy %
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IQL plans with decreasing producer’s (or consumer’s) risk, i.c.
P(po) = 1/2 and Q(pl) = af/N (or P(pz) = B/N), which corresponds to the !

IQL plans discusscc {n section 9,

It may be pecessary to modify conditions of the form Q(pl) = a/N, say, to
Q(Pl) = a, for N g No and O(pl) = aONO/N = ~/N for N> NO.

It will be noted that the requirement min R has been replaced by conditions as

Q(Pl) - a/N and/or P(p,) R/N,

We shall give a short discussion of these three systcms, Each of the first two

contains two arhitrary perameters, a and f, wherces the last containg only one,

L, From the two conditions we find that B(c,n,pz)/(l - B(c,n,pl)) = 3/a, which
defines o relationship betwecen n and ¢, n = n. say. Defining the auxilizry function

NC - p/B(c,nc,pz) it follows that (c,nc) satisfics the conditions for Nc-l < NK< NC

(1f we interpret the equzlities as £), It is therefore rather easy to tabulate
thege plans when n. has been found, Since P(pl) > P(pz) it is necessary for

a solution to exist that N > a + B.

Asymptotically we find that c¢/n = P + azln + 04/“2 + Q(n-3) where Po? 399 and

a, are determined by mcans of thcorem 3, {.e,

4
BN, 7
. L 172
3, = & In . au
271
The relation between lot sizc and sample size is given by (55).
The corresponding costs arc
R = n+ (r,a+7,p)+ g(n"z) 72)

which is minimized with respect to a and B for a = (-wi)/rl¢08’ and
-t ’
£ ¢1/72¢0p , compare theorem 5.

For any a and f we may thus construct a system of sampling plans with the same
asymptotic properties as the Bzoyesion plans. Tabulation of the 'bptimunl'values
of @ and B for typical values of (pl,pz,71,72) may give some guidance for the

choice of a and B,

B. The condition P(pz) = B defines n = n. which together with the other condition

gives
NC =a/(l - B(c,nc,pl)).lt is necessary that N> a/(l - B).

Asymptotically c/n is given by (55), and by means of theorem 1 we get

-y
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1 S A
In N == qa(pz,pl)n + bl\/ﬁ e Elnn+5+ln(a(p2-p1) \f-2vrp2q2/plq2) + ... (72)
where b1 » bi(PZ’pl)'
The corresponding costs become
R = (1-7,Bn4y0 + 7,88 + o(n) (74)

which is minimized with respect to « for a = (1 - 7?ﬁ)/71m(p?,p1), compare

theorem 0,

The system may be characterized as an LTPD system with the consumer’s risk inversely
proportional to lot size. It is much casier to tabul~tc than the corresponding
restricted Bayesian system,

C. The exact solution is analogous to the one under B,

Asymptotically we have c¢/n = P + az/n + a[‘/n2 + g(n"j), where the cocriicicals

3, and a, are given by (55). From theorem 1 we €ind

In N= ¢gn + lln n+a, ¢l + In(ay,/N,) +b,(p.,pP )n'1 + O(n-z) (")

o " 2 2%1 1’ ¢ \Fo’F1 - :
The costs become
71y 3P 5 -2
Ren+ 7,4 + e (1 +(ab6’ + B, = By)n ) 5 0(n 7)) (75
Xl 2 1 =
-2 (*’

which is minimized with respect to a for z = ch 2 1/¢CX71, compare thecrem 7,

The system is an IQL system with the consumer’s risk invcrsely proportional to let
J
size, According to theorem 2 the producer’s and the consumer s risk are nearly

equal,

The exact solution is very easy to tabulate because n_may be found from thc

(o
agymptotic solution with sufficient accuracy for c¢ 2 1,

D, Fixed risks. For the sake of completcness we mention the system with fixe!

risks, i,c, Q(p,) = a and P(p,) = f§, which leads to a sampling plan indepcndent of
1 2 ’

N and gives
Ro= (L= 7,0 = 7,80 + (7,2 + 7,6)N. (77)

For systems A and C the costs consist of sampling inspection costs, n = O(ln V),

plus an asymptotically constant average decision loss,

For system B the sampling inspection costs are O(ln N) and the ¢a:ision loc-
consists of a constant part (from the decreasing rick) and 2 part proportional

to N (from the constant risk),
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Por system D sampling inspection costs are constant and the decision loss is

proportional to N,

E, Percentage ingpection, The plans are defined by n = uN, i being a (arbitrary)

constant, and ¢ = p,n (or ¢ - PR + 3, + o wie Do
From theorem 1 we get

R - uN +g(Ne'N) (78)

so that we have the interesting result that for the given model plans with

fixed risks and plans with percentapge inspection asymptotically have the samc

costs for y = 711 + 72B.

In the first case the costs arc essentially decision losses (because the sample
is too small) and in the secoad case the costs are essentially inspection costs

(because the sample is too large).

For 71 = 1, 72 = 0,5, a = 0.05,and § = 0.10 we get u - 0,10 which is of the order

of magnitude as previously fouad in practice.

13, Efficiency and robustness,

in a previous paper IJQI it has been proposed to define the efficiency of a

sampling plan as
e(N,n,c) = RO(N)/R(N,n,c) (79)

where RO(N) denotes the costs of the optimum plan and R(N,u,c) denotes the

costs of the plan {n question,

For o lot containing X defectives acceptance without inspection is cheaper than
rejection without inspection if X s [Npr]. Classifying all lots in this way the

average costs become

(N) e ), (X) D )E (X)
K = £ (NA, + XA, (X) + z NR, + XR X).
m x-O 1 2 N xl' [Np ]+1 1 2 N
r
By means of theorem 1
-3/2 -N
Km(N)/N = km + O(N e )

and K (N)/N —> k_ from below,
m m

It would be more correct to define efficiency as the ratio of costs in excess of
Km(N) instead of Nkm. The difference in the two definitions is, however, of
importance only for very small N. The definition (79) tends to underestimate

the eificiency.
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Theorem 10, Lec a system of sampling plans be defined by che cwo rc.a. ‘ous

c = npo a2+ o(l) and

In(N-n) = won + % In n+ x + o(1) (o
Po %
where p = ln o // and 9. = p.ln — + q.ln ==, i < 1 or 2. Ticn
o\ P12, OR i SO
1 -1 5
C(N,n,c) = l = @ (\CX +4- Ko- K - 1) +,\,(n ) (’Jl)
ag R
where %o denotes the constant term of (47) and A~ xle + xzc .

Proof. Prom theorem 5 we have that RO(N) “on 4 1/¢o where g is defined Ly

0]
(80) for x = x.. By means of theorem 1 and (80) we find that R(N,n,=) = 0 - 4
so that

o

+ — 1+% AL

wO/ /

Comparison of (80) and the corresponding equation defining Ny leads co

no/n =1+ (n-no)/¢on + o(n-l) which comypicies cthe proof.

The theorem shows cha: the resiricted Bayesian plans, apart from .he onc v,
a fixed risk, and che corresponding plans based on two risks all have asyp:of w
cfficiency 1. The rcasons for this impor.an: resulc arc chat thesc p.anc onlyv

differ with respecc co the constanc terns a, and «.

I. should also bec noted chat Py and % denend on (pl,pz) only, uvhereas a, ar' v
depend on the ocher paramecers also. This wmeans chac wrong values ol (”17”7)
and the cost paraneters have a sccondary influence on the cfficiency vhich

tends to 1 if only (pl’pZ) are correcc.

Since plans having che consumer’s and/or the producer’s risk fixed, i..d

to costs of order N, c-hc efficiency of such plans tends to zcro as(ua 7./ I,

Suppose now that plans have been construc:cd from wrong valucs o ‘he narannters,
» * L » »* *
(pl,pz, 71,72) say, wherc p, { p, and P, 1 p,. We then gec

Theorem 11. Lct a system of sampling plans be defined by the two relacions

* *
c = npo + a, + o(l) and
In(N-n) = w;n + % Inn + K.+ o(l). (32)
Then » »
‘0 1 * 1. Y%7 -1
¢(N,n,c) - — 1 - — k. .-x -1 + = In — + o(n ") (3
¢ * 0 2
0 n O//

“n
if and only if p1< pI< p;< Py Otherwise ¢ => 0O as N ln N for 0 < ¢ = L.
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Proof. If pl< p; < P, if follows from thcorem 1 that

A -

M
-1 -n¢(py,Py) =3,
R=n+ (N-n)n /2 Ex‘c Gt 271

+* *
-nd +x -a oi

i
Ay y
n + ‘xie

» * * * »* ] » * *
where 61' w(po,pi)-w(po,pi) since g = w(po,pl) = w(pu,pz) . If Po 1 (pl,pz)

+hen R contains a term proportional to (N-n) beside terms as above.

Since
» - »
P, P ' Py P
5> 0 for S f and 8, > 0 for ix 2 f'
Le)> v, P2 P
?, - _ » * ) : < < 'I' a
we get 61> 0 and 2> 0 for (1) pl< pl< p2< Pys (2) < Py p1<p2
» +* i . {.' * i. N \
(3) P;< p2< P Py 51> 0 and 62< 0 for (%) p1<pl< p2< Pys bl< 0 and 82> 0
- * ) » »
for (5) p1< p1< Py< Py 81< 0 and 62< 0 for (o) p1< p1< p2< p2,

In cases (2) ?nd (3) we have p; ¢ (pl,pz) wherefore R = O(N). In cases (43 -(6)
we may have Po - (pl,pz), but since at leas: onc of the #’s is negacive, and
b < 0 gives
cxp(-nd) = cxp(-J% In N4+ ,,.)) = Q(Nr), 0<c <1,
Yo
we geo R = g(Nﬁ), 0 <¢ <1, including che cases with p; ¢:(p1,p?). It follows
:hat ¢ => 0 as (lIn N)/Hc.

In case (1) we have R = n 4+ Q(e—n) so thai ¢ «(n0+ llq)/n. From (52) and the

corresponding expression for n, we find

3 *
n ¢ / Pa \ -
R P N
n ) 0 @ N

o 0/ 70

which leads to (33).
1

It is also clear hat the cases with at lcasi one risk fixed give ¢ = Q(N- In N).

The general conclusion is that the Bayesian plans (and also the rescricied
Bayesian plans with decrecasing risks) arc racher robust if orly p1< pI< p;( P,

A diecussion with numeri~al examples has been given in [11].

If the prior distribucion of p is continuous we get asymptotically that n
is proportional to y N. This case has bcen discussed in [10] where also a

comparison with IQL planc has becn given.
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14. An example.

As an ecxample consgider a case wiih Py 0 01, W, " 0.85, and P, 0.05, Wy~ 0.15.
Let the costs of sampling inspection be 0.4C (cconomic units) per item in the

sample, 1i.e. Sln 0.40 and Sz- 0, the cos:s of rejection 0.30 per item in

the remainder, i.c. R1= 0.30 and R2= 0, and che costs of ac:eptance per

defective item 10.00, i.e. A;= O and A2= 10.00. It follows that P~ 0.03,
71" 0.6296, and 72= 0.1111.

1

In the table we have compared plans from 8§ systems defined as follows:

(1). Bayes. Plans minimizing R(N,n,c).
(2). IQL. Min R for P(po) = 1/2. We get P
found by minimizing R = n + (N-n)(71+p72) where
, -2/3
M7y Py

p o= —=— == = 0.99832, and 7,+07,= 0.74.
IR,

0.0250. The plans have been

(3). LTPD. Min R for P(pz) = 0.10. v = 0.04,

(4), AQL. Min R for Q(pl) = 0,05. y = 0.11.

(5). Fixed risk. Q(pl) = 0.05 and P(pz) = 0.10.

(6). Percentage inspection, u = 0.0571+ 0.1072= 0.04259.

(7). Dodge. The £QL syscem with 5% consumer’s risk proposed by Dodge in (3]
with AQL = Py

(8). Mil-Scd. Military-S:andard 105D [1¢] wich AQL = P

The Dodge-Romig sysiem has noc been included in the comparisons because it

gives nearly the same rcsult as the LTPD system with y = 0.64,

For cach of 7 lot sizes the Bayesian plan and the corresponding costs have

bcen found and for (he other systems the cf{ficiency has been compuied from
(79).

Since 7, is considecrably larger chan 7, ic will be expected that plans w.th
small values of Q(pl) as compared to P(;z) arc to be preferred. Systems with
a fixed producer’s risk, such as (4), (5), and (7), may thercfore be cxpected

to give low efficiencies for large lots, as seen in the table.
It is interestin, co comparc the two risks for the various systems.

The table reveals what pricc must be paid to obtain a specified degree of
protection, It may in somec circumstances scem rcasonable to pay such a price
for small lots, but cercainly not for large lot: wherc the proteccion obiained
in terms cf the two risks is very good boch for ithe Bayesian and thce IQL

system.
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15, Miscellaneous remarks,

A, Gencralizations of thc model. As tndicated in section 2 the model may Lo

generalized by introducing o polynomial cost function ~s in (12) and/ or

a more general prior discribation, The asymptotic rcsults hold for any prior
distribution havinyg probability zero for values of p in the open interval
(pl,pz), where Py < Py < Pys 1nd assigning finite prebabilitices, vy and Wy 577,
vy + v, 51, to the end-points of this interval, i.c. the prior distribution
may be arbitrary outsidc thc closed interval (pl,pz), see [7 ], [8], anc lll'.

hnother possible gencralization will be to make the prior distribution 2 functicn

ol N, sec (13), for example to usc a doublc binomial with pz/p1 depending on I

B, The AOQL system, If P < PL < Pys PL denoting the ACQL, it may be shown os

in [13] that R = . + 71/01 4 Q(Nl-wz/q‘), where ¢, = ¢(pL,pi) for i = 1,7
For PL § Po e have wl§ Py which means that the AOQL system gives a satisfrctovy
result within the given framework only {f PL s Py i generalization of the

£O0QL system has been discugsced in [12}.

C. The relation to hypothesis testing, The producer’s nncd consumer’s risks

correspond to the probabilicies of errors of the first and second kind, respectively,
for testing the hypothesis p ) agninst the alternative p = Py- Lchmann [lé]

has suggested .o use the rclationship B = 'u as a rule of thumb for obtaining

a reasonable balance between the two error probabiiitics (. = Q(pl) and B = P(pz))
instead of just using 2 standard significance level for . It is intercsting to
notice that the Baycsian solution ~symptotically has this property , scc (52),

so th~t Lelmann’s rulce is supportcd not only from the minimax point of vicw,

25 mentioned by himself, but <lso from the Bayesian,

Lickpowlednement,

My thanks are due to Professor D. Duguc, l’Institut de Statistique de
1’Universite de Paris, who invited me to give thrce lectures on the theory of
sampling inspection in April 1955, The present poper is a revised version of

the lectures,

My thanks are due to Mr, N, Keiding and Mr, P, Thyrcgo! [or checking the asymptotic

expinsions, Mr. Thyregod ~lso carried out the computations for the example,
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